
 1

Abstract—Traditional air cooling has reached its maximum

server density at roughly 25kW per 42U rack. Direct liquid
immersion cooling potentially allows for server densities in excess
of 75kW per 42U rack. To test these numbers we designed a test
bed that would allow for a comparison between tradition air
cooling and direct liquid immersion cooling. Each server ran a
minimal install of Debian 6.0 (Squeeze). Once the servers were
configured, several benchmarking tests were to be conducted,
which put the servers through daily loads (from light to extreme)
over a period of a month and output the information to the
MySQL database. To ease the data collection process,
temperature sensors were utilized to monitor hotspots inside and
around the server. After all the data was collected, the results
were to be analyzed and compared. A conclusion was then be
determined on which cooling solution is the most effective.

Index Terms—air cooling, direct immersion cooling, liquid

cooling, server cooling, submerged cooling

I. INTRODUCTION
ARGE datacenters have been plagued with high power
costs for decades. On average, datacenter power costs can

consume 40% of the monthly expenses, with over 20% due to
powering and cooling electronic equipment. For some data
centers, this can lead to well over $1,000,000 per month in
costs [8].

Traditional data centers utilize raised floor technology and
large forced air HVAC systems to keep electronics cool. A
direct contributor to both the noise and power draw is cooling
electronic hardware. Traditional forced air cooling, while
effective, has a capability of around 5 kW per rack over a
sustained area. Today the same 5 kW rack can now draw up to
25kW. The increase in power density raises the question of
how to cool these servers. The power density is coming close
to the maximum cooling potential of the conventional air-
cooled datacenter architectures [6].

Manuscript received April 28, 2011. This work was supported by Danny

Miller, BS, Lecturer, Electrical Engineering Technology, Michigan
Technological University, School of Technology.

J. Q. Askwig graduates summer 2011 from Michigan Technological
University with a bachelors in Computer Network and Systems
Administration. jqaskwig@mtu.edu.

N. R. Butler is a recent graduate of Michigan Technological University in
Computer Network and System Administration. nrbutler@mtu.edu.

K. M. Huglen is a recent graduate of Michigan Technological University
in Computer Network and System Administration. kmhuglen@mtu.edu.

S. M. Sinda is a recent graduate of Michigan Technological University in
Computer Network and System Administration. smsinda@mtu.edu.

The potential solution the Submerged Cooling Senior
Design team has spent months researching is the direct
immersion of computer hardware in dielectric oil. Studies have
shown that this method is the most efficient way to cool
electronics due to its power saving capabilities, significant
temperature changes, and even cooling distribution throughout
the entire system.

Mineral oil has a high specific heat capacity, which means
it can absorb a considerable amount of heat without having to
vent it out to the surrounding air. It takes the system a
significant amount of time to work up to its equilibrium
temperature. According to Pugetsystems, the starting
temperature on the CPU would start at 29°C and takes about
an hour to hit a stable idle temperature of 37°C [7].

One of the companies implementing this solution is Green
Revolution Cooling (GRC). For over 90 years, this company
has been providing dielectric fluid submersion cooling
solutions to several categories of industrial size electronics.
Just recently, GRC started implementing submerged
datacenters with their own unique blend of oil called
GreenDEF. This unique blend has been claimed to perform
better than air because it holds six times the dielectric
constant, which prevents micro-arcing, improves electrical
efficiency and connectivity. It also holds 1,200 times more
heat by volume and is significantly better at heat transfer [6].

As far as saving energy goes, GRC has developed an
efficient way to calculate the cost and savings of using the
GreenDEF solution. This can be found at
http://www.grcooling.com/wp-content/uploads/2010/06/Cost-
Savings-Plugin2.htm. Just to give a perspective, using this
calculator, one 42U rack containing 42 dual CPU submerged
servers will save a company $22,664 dollars per year if their
energy cost is $0.20 cents per kWh. This is very substantial
savings for companies [6].

II. MATERIALS

A. Hardware
The following segment will cover the technical aspects of

the hardware that was used throughout the course of this
project. Equipment that was utilized throughout the entirety of
the study will be covered first followed by hardware used in
their respective network implementations referenced to their
associated figures shown later.

The control center for the testing environment was a Dell
T410 with two Intel Xeon 5500 processors with 4GB of

Server Cooling Comparison Direct Liquid
Immersion vs. Tradition Air Cooling
Jonathan Q. Askwig, Nathan R. Butler, Kyle M. Huglen, and Shane M. Sinda

L

 2

memory providing ample computing power for its purpose.
The Dell T410 housed two 150GB hard drives (15000 RPM
Dell Cheetah), configured in Raid-5, offering more than
enough storage to hold data retrieved from the test bed and the
scripts used to procure it. Testing scripts were pushed from the
Dell T410 to four Dell PowerEdge 750 servers. Each of the
Dell PowerEdge 750s were equipped with a Pentium 3
processor along with 2GB of memory. To maintain
consistency between the test results, all four machines were
kept as identical as possible. For the submerged machines
several irrelevant parts were stripped: including the internal
fan casing, CPU fan, memory fan, USB fan, PCI fan, floppy
drive, CD-ROM drive. The hard drive cables were extended
and the hard drives were placed outside the submersion tank as
to not be harmed by the oil.

In the original network design (Appendix A, Figure 1) two
database servers were the initial choice to store the data, as
there would be a layer of redundancy with a main and slave
data storage server. These IBM xSeries4340s were running a
Pentium 3 processor and contained three 36GB 10k rpm SCSI
drives providing a total of 108GB of disk space on each
server. Also present in the first version of network was a
Foundry FastIron 800 switch.

Version 3 (Appendix A, Figure 3) of the network schematic
replaces the Foundry FastIron 800 with a DLink DES 3624
switch. The DLink DES 3264 had 24 Ethernet ports to
accommodate the network’s needs. Another identical DLink
DES 3624 is added in Version 5 (Appendix A, Figure5) to
provide switching capability for the isolated testing area. The
redundant database servers found in Version 1 and 2 were
swapped for an EMC Clariion CX600 Storage Area Network.
This machine has a total of ten useable hard drives. Each drive
was 72GB giving a total of 720GB hard drive space. It also
had a fiber connection to the storage server that interfaces with
the existing Ethernet network. Since there was no longer a
need for the database servers, one of them was used as the
Storage Server and outfitted with a fiber channel NIC so it
could communicate with the EMC Clariion CX600 SAN. Due
to the relocation of the submerged Dell PowerEdge 750
servers, a Linksys WRT54G was required to wirelessly
connect them to the rest of the testing environment.

Version 6 (Appendix A, Figure 6) introduces the Arduino
Mega 2560 microcontroller in charge of collecting data from
sensors placed inside the devices being tested. The Arduino
Mega 2560 can be powered via USB or external PSU, has
256KB (8KB is for bootloader) of flash memory, a 16MHz
clock speed, can support up to 54 Digital I/O pins and 16
Analog pins; each which can house a device such as a Maxim
DS18S20 temperature sensor [1].

Maxim DS18S20 temperature sensors were used to obtain
the external temperatures of the servers. Maxim DS18S20
sensors’ are parasitically powered temperature sensors that are
capable of detecting temperatures ranging from -55°C to
+125°C. While between the ranges of -10°C to +85°C the
sensors’ deviation is only ±0.5°C whilst giving accurate
temperature readings down to the hundredths of a degree. Each
DS18S20 has a unique hardcoded 64-bit address which allows
for multiple sensors to be placed on the same data bus line [3].

B. Software
lm_sensors was installed on the testing servers to obtain

temperature data from the servers' onboard CPU and
motherboard sensors. The control server stored “get” and
“send” scripts for each testing server. The “get” scripts
executed lm_sensors, output the data to temporary files, saved
the CPU and motherboard temperature, sent the data to a .csv
file on the control server, and emailed the group if the
temperature surpassed 150°F. Each “send” script simply sent
the “get” script to the corresponding testing server. The “send”
scripts were put in the crontab and set to run every 5 seconds.
Example scripts (get_air00.sh, send_air00.sh) and an example
output file (air00.csv) can be found in Appendix E and
Appendix F.

cpuburn is a hardware stability testing tool developed by
Michael Mienik. Cpuburn heats up the processor to its
maximum operating temperature by continually cycling
floating point unit (FPU) intensive functions for a specified
time. FPUs are also known as the math coprocessor which is
responsible for carrying out floating point arithmetic.

C. Network Configuration
A small network was needed in order to conduct the testing.

From concept to actual implementation, the network design
underwent six revisions. This was due to over-ambitious goals
at the start of the project, hardware issues, and physical
relocation of the project.

Version 1 of the network (Appendix A, Figure 1) utilized
nine servers, a remote computer, the campus network, and a
switch. Six servers were dedicated to the testing subnet: 2
submerged, 2 liquid cooled, and 2 air cooled. One server of
each cooling group would run Windows while the other would
run a Linux distribution. The server subnet consisted of three
servers: a control server, a database server to store temperature
data, and a slave database server for redundancy. The control
server was a frontend to the test-bed, sending scripts to the test
servers, allowing remote access to the test servers through
SSH. The remote computer would be used as an additional
layer of redundancy to store temperature data and
configuration files. This version of the network was purely
conceptual, as no hardware had been obtained yet.

Version 2 of the network (Appendix A, Figure 2) saw a few
changes as hardware was obtained. A Dell T410 running
CEntOS was used as the control server and a Foundry FastIron
800 was used as the switch. An IBM and a Dell server were
used for the database servers.

One public IP address would be allocated for the project.
As a result, the control server was placed on the edge of the
network and used as a gateway for the internal testing subnet
(it had four Gigabit Ethernet ports). Iptables and DNS were
configured to allow the internal subnet to access the Internet
through the control server.

Worth mentioning is that there was only one available jack
in EERC 328A, and another senior project also needed a
public IP address. It was our job to configure the switch to
split the connection, which is the reason for the EXTERNAL

 3

VLAN shown in Figure 2. This is the setup used through the
majority of the fall semester until early February.

Version 3 of the network (Appendix A, Figure 3)
underwent a major revision. Due to the general lack of
resources along with the time constraint, it was decided to drop
the liquid cooling portion of the project along with the
comparison between Windows vs. Linux. This would also
allow for a more defined project scope. At this point, the
project advisor–Professor Danny Miller–provided four Dell
PowerEdge 750 servers for testing.

It was also decided to eliminate the two database servers.
Instead, one would be used as a storage server connected to
the CNSA department's EMC Clariion CX600 SAN. This
would provide a much higher level of redundancy and would
also allow us to eliminate the remote backup computer from
the design.

The Foundry switch was needed for the Network
Engineering class. A DLink DES 3624 was provided as a
replacement and was reconfigured without any issues.

We believed that the hard drives could not be submerged in
oil, so the control server would be utilized as a PXE server and
boot CEntOS for the test servers through the network.

The team was informed by Professor Miller that the 40
gallon tank of oil would need to be located in a workshop on
the ground floor of the Minerals and Materials Engineering
Building due to safety concerns. This caused a major issue
since the workshop had no network connection. However, a
decent Wi-Fi signal was available. A Linksys WRT54G was
configured to run OpenWRT and to operate in “client-bridge”
mode, which would allow the two submerged servers to send
their temperature data through the control server in EERC
328A to the SAN. This was far from ideal since the Wi-Fi
network requires a manual logon through a web browser every
24 hours in order to obtain an IP address. As a result, someone
would have to physically visit the workshop every morning
during testing to re-activate the connection. Otherwise, no
scripts would be able to pass to the submerged servers.
Another issue is that the IP address would be obtained through
DHCP, making automation of the scripts extremely difficult
since the address specified in the script may change daily.

Version 4 (Appendix A, Figure 4) only saw a slight change.
Since the test-bed was now segmented, it would not make
sense to push the PXE boot across the campus network to the
submerged servers. The Linksys WRT54G would be used as
an additional PXE server instead.

Version 5 (Appendix A, Figure 5) underwent another slight
change. The air cooled servers were moved out of EERC 328A
down to the workshop, and the former database slave server
was used as the sole PXE server. An additional switch was
obtained since the Linksys WRT54G only had four switch
ports.

The final revision was Version 6 (Appendix A, Figure 6).
After many different troubleshooting steps, we could not get
the storage server to successfully communicate with the SAN.
Without the SAN, there was no reason for the control server to
be in EERC 328A, so everything was consolidated in the
workshop.

It was decided to not utilize PXE booting after realizing
that the data cables were long enough to extend out of the oil.
The power wires, however, did have to be extended. It was
also decided to switch from CEntOS to Debian 6.0 (Squeeze)
for the testing servers due to the smaller footprint. Only the
packages required for the testing were installed.

Figure 6 also shows the Arduino control board connected to
the control server via USB, with temperature sensor bundles
being run to each of the test servers.

The networking problem mentioned with Version 3 was
solved after discovering an abandoned cable run leading to an
empty jack in an adjacent room. CAT5 cable was run and
MTU Telcom was contacted to transfer the record for the jack
in EERC 328A to the new jack at the end of the cable run.

The hosts file on the control server and each testing server
was edited to reflect the hostname of each server. Public Key
Authentication was configured between the control server and
each testing server in order to allow automated communication
during testing. Sendmail was also configured to send the group
a warning email in case any of the servers started to overheat.

To handle the test results MySQL 5.0.77 was chosen. The
user ‘subcooling’ was created to input data into the database.
‘subcooling’ was restricted to INSERT only on the subcooling
database on the localhost. The subcooling user was used to
input test results into the subcooling database only. The
database itself was created to have one centrally controlling
table that was linked to all of the other tables by way of
foreign keys. This allowed for quick references to specific data
points from any test.

The servers table was created to store static information
about the servers that are being used for the entire project. All
of the other tables grew as the tests were performed on the
equipment. Once the tests were performed, all of the data was
easily accessible by knowing the test_id, this would quickly
display all pertinent test information by ways of the testing
table. The overall database design can be seen in Appendix B.
The tables and users were created with two SQL scripts,
TableCreate.sql (Appendix C) and UserCreate.sql (Appendix
D).

Raymond Saliga, B.S. Biologicial Plant Science, developed
code to monitor greenhouse variables that was easily portable
to the project. After talking to Raymond it was decided that
two programs would be required for this project. The first
program, AddressFinder.pde (Appendix G) , simply obtains
the 64-bit address ({0x10, 0x5B, 0x18, 0x25, 0x02, 0x08,
0x00, 0xA7}) that uniquely identifies each DS18S20. For the
Arduino to read the addresses “0x” had to be appended to each
octet. The second program, GetTemps.pde, retrieves all of the
temps that are on the bus line. Both programs utilize the
OneWire.h and DallasTemperature.h libraries.

AddressFinder.pde works by first setting up a OneWire
instance to communicate with sensors. After the
communication channel is established the Arduino starts
interrogating the sensors for its current address and
temperature in both Celsius and Fahrenheit. The sensors were
then tagged with the last octet of their address and recorded for
future references (0xA7 -> A7).

 4

GetTemps.pde (Appendix H) obtains all of the external
temperatures from the 20 sensor temperature array. Before this
program can run correctly, the Arduino needs to be
configured. At “// Data wire is plugged into port 3 on the
Arduino” there are six variables that need to be defined.
ONE_WIRE_BUS variable needs to be set to the data port that
the sensors data line is plugged into on the Arduino.
TEMPERATURE_PRECISON variable sets the sensitivity of
the sensors and is currently set to 9.
THERMOMETERS_MAX variable sets the current number of
sensors that are on the bus line. This variable is important
because this number is used to ensure that all sensors have
reported data before transmitting to the server.
HUMAN/MACHINE variables are used later in the program
and should not be changed. OUTPUT_TYPE defines the
output format that is going to be sent to the server.
OUTPUT_TYPE 0 outputs a human readable format and
OUTPUT_TYPE 1 outputs the data into a .csv file for easier
parsing and inputting to the database.

Once all variables are configured correctly the program can
be uploaded to the Arduino board. Instantly the Arduino starts
interrogating the sensors and reporting back to the server. For
the server to interact with the Arduino, minicom was used.
Minicom would open a session with the Arduino, normally on
“/dev/ttyACM0”, and output the data to an output file. This
process proved cumbersome for sensor arrays over ten sensors.
The general consensus was that the Arduino was sending too
many characters across the serial line without a carriage return.
To solve this problem GetTemps.pde could be modified to
collect the data and send it in two chunks rather than one large
one.

D. Oil
The two different types of oil suitable for cooling purposes

are transformer oil and its less refined counterpart, mineral oil.
Both transformer and mineral oil are dielectric fluids, which
do not affect electrical parts because they are non-conductive.
Transformer oil was proposed at first because of its
exceptional cooling capability along with its high combustion
temperature that would create a safe testing environment. It
also does not cause any type of corrosion or rusting due to its
ability to prevent oxidation. Even though transformer oil had
all the qualities that were desired, mineral oil was the best
solution because it is cost friendly and possessed the same
traits as transformer oil just a lower quality. Also, transformer
oil is more expensive due to the extra steps needed to refine it.

To test the solution, GRC’s GreenDEF mineral oil blend
was desired. Unfortunately, the oil was unavailable to us
because GRC said they were not in a position to donate any
oil, but they provided guidance by saying any brand of mineral
oil should work for the testing procedure.

UPPCO was then contacted requesting transformer oil.
Liability costs caused them to be hesitant about donating oil
due to the possibility of a toxic chemical being in the oil called
Polychlorinated Biphenyls (PCB). After many weeks of
waiting, UPPCO denied the opportunity of donating oil.

We finally obtained a brand of oil called “AGRIpharm
Mineral Oil 95 Viscosity” which was purchased from a local
feed store. This mineral oil is used as an animal laxative.

However, after testing it by submerging a WRT54G wireless
router in oil, we found that it had no flaws and it was feasible
for the experiment. This was beneficial because all other
brands of mineral oil cost about $18.00/gallon as opposed to
this brand which was $13.00 a gallon. The budget allowed for
the group to get 31 gallons: 1 gallon for the initial test of oil
quality and 30 gallons to fill the tank.

III. TESTING PROCEDURES, PROBLEMS AND SOLUTIONS

To ensure that no devices critical to the testing environment
would be damaged after submerging them into oil, a testing
procedure was implemented to minimize loss. The first device
that was chosen to be immersed in the oil was a Linksys
WRT54G router. After a successful test, the decision was
made to move forward with submerging the two testing servers
into the tank.

Following the start of the last stage in the procedure, events
did not unfold exactly as anticipated. After starting sub00
while submerged, the server proceeded to start its POST then
immediately shutdown. After further inspection, it was realized
that the PSU fans were spinning irregularly and may have
caused the abrupt shutdown. To confirm this, a second test
which immobilized the PSU fan was conducted on air01, and
as expected produced the same results. The reasoning for
sub01 unexpected shutdown was determined to be caused by
the viscosity of the mineral oil.

The next course of action chosen to alleviate the problem of
the malfunctioning PSUfans was to extend the power and data
lines length so the fans could sit outside of the tank and spin
freely. However, when these changes were applied, sub01 still
did not start (although it did get to grub).

Due to this inconsistency in the boot sequence, the team
determined that the only adequate solution would be newer
servers that have a more flexible BIOS for modifications.

IV. CONCLUSION
Overall the group is very pleased with the accomplishments

we made during the year on this project. Although we were not
able to effectively test this cooling solution ourselves it is
currently being used in both industry and in home
environments. We believe that we have laid a good foundation
for this project to be carried on in the future. As most of the
problems that we encountered were directly related to old and
outdated hardware.

APPENDIX
Appendix A: Network Diagrams
Appendix B: MySQL Database Diagram
Appendix C: MySQL DatabaseCreqte.sql
Appendix D: MySQL UserCreate.sql
Appendix E: get_air00.sh
Appendix F: send_air00.sh
Appendix G: GetAddress.pde
Appendix H: GetTemps.pde

 5

REFERENCES
[1] Arduino. (2010, Oct. 26). Arduino – Arduino BoardMega2560 [Online].

Available http://arduino.cc/en/Main/ArduinoBoardMega2560
[2] Arduino. (2010, Oct. 26). Arduino – Home Page [Online]. Available

http://www.arduino.cc
[3] Maxim. (2010, Nov. 16). DS18S20-PAR.pdf [Online]. Available

http://pdfserv.maxim-ic.com/en/ds/DS18S20-PAR.pdf
[4] M. Mienik. (2011, Jan. 20). CPU Burin-in Homepage [Online].

Available http://www.cpuburnin.com
[5] A. Trujillo. “Data Center Liquid Cooling vs. Forced Air cooling.” Data

Center: Systems Management News and advice for Data Center
Managers. Feb. 19, 2007

[6] GRCooling. (2010, Sept. 25). Green Revolution Cooling [Online].
Available http://grcooling.com/?page_id=70

[7] Pugetsystems. (2011, Mar. 15). Mineral Oil Submerged Computer; Our
Most Popular Custom PC [Online]. Available
http://www.pugetsystems.com/submerged.php

[8] APC. (2010, Oct. 26). “Determining Total Cost of Ownership for Data
Center and Network Room Infrastructure.” Linux Labs. Available
http://www.linuxlabs.com/PDF/Data%20Center%20Cost%20of%20Ow
nership.pdf

http://grcooling.com/?page_id=70�

Appendix A

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Appendix B

servers

PK srv_name

 srv_os
 srv_ram
 srv_ramFreq
 srv_processor
 srv_diskSpace
 srv_freq
 srv_psu
 srv_raidType
 srv_ipEth0
 srv_macEth0
 srv_ipEth1
 srv_macEth1
 srv_comments
 srv_procFreq
 srv_ipEth2
 srv_macEth2
 srv_ipEth3
 srv_macEth3

serverTempInt

PK tempI_sample_id

FK1 test_id
 tempI_sampleTime
 tempI_cpuAw
 tempI_cpuLw
 tempI_cpuOw
 tempI_cpuAl
 tempI_cpuLl
 tempI_cpuOl

Power

PK pow_sample_id

FK1 test_id
 pow_sampleTime
 pow_airWin
 pow_liqWin
 pow_oilWin
 pow_airLin
 pow_liqLin
 pow_oilLin

network

PK net_sample_id

FK1 test_id
 net_sampleTime
 net_latencyAw
 net_latencyLw
 net_latencyOw
 net_latencyAl
 net_latencyLl
 net_latencyOlcontrol

PK con_scriptName

FK1 test_id
 con_desc
 con_purpose

testing

PK test_id

FK4 srv_name
 test_date
 test_cpuFreq
 test_desc
 test_ramFreq
FK1 pow_sample_id
FK2 net_sample_id
FK3 tempI_sample_id
FK5 tempE_sample_id
FK6 proc_sample_id
FK7 ram_sample_id

serverTempExt

PK tempE_sample_id

FK1 test_id
 tempE_sampleTime
 tempE_cpuAw
 tempE_cpuLw
 tempE_cpuOw
 tempE_nbAw
 tempE_nbLw
 tempE_nbOw
 tempE_ramAw
 tempE_ramLw
 tempE_ramOw
 tempE_airInA
 tempE_airOutA
 tempE_airInL
 tempE_airOutL
 tempE_oilBotO
 tempE_oilMidO
 tempE_oilTopO
 tempE_ambientRoom
 tempE_liqInL
 tempE_liqOutL
 tempE_oilInO
 tempE_oilOutO
 rempE_cpuAl
 tempE_cpuLl
 tempE_cpuOl
 tempE_nbAl
 tempE_nbLl
 tempE_nbOl
 tempE_ramAl
 tempE_ramLl
 tempE_ramOl

processor

PK proc_sample_id

FK1 test_id
 proc_utilAw
 proc_utilLw
 proc_utilOw
 proc_utilAl
 proc_utilLl
 proc_utilOw
 proc_sampleTime

ram

PK ram_sample_id

 ram_sampleTime
 ram_useAw
 ram_useLw
 ram_useOw
 ram_useAl
 ram_useLl
 ram_useOl
FK1 test_id

Appendix C

/* DatabaseCreate.sql */
/* Create Subcooling database */

/* Drop tables */

DROP TABlE IF EXISTS testing CASCADE;
DROP TABLE IF EXISTS servers CASCADE;
DROP TABLE IF EXISTS network CASCADE;
DROP TABLE IF EXISTS processor CASCADE;
DROP TABLE IF EXISTS serverTempInt CASCADE;
DROP TABLE IF EXISTS serverTempExt CASCADE;
DROP TABLE IF EXISTS ram CASCADE;
DROP TABLE IF EXISTS power CASCADE;

/* Create test table. This table is used to organize all of the tests */

CREATE TABLE testing (
 test_id INT AUTO_INCREMENT PRIMARY
KEY,
 test_date DATE NOT NULL,
 test_cpuFreq FLOAT NOT NULL,
 test_ramFreq FLOAT,
 test_desc VARCHAR(150),
 pow_sample_id INT,
 net_sample_id INT,
 tempI_sample_id INT,
 tempE_sample_id INT,
 proc_sample_id INT,
 ram_sample_id INT,
 srv_name VARCHAR(20)
)ENGINE=INNODB;

/* Create servers table */

CREATE TABLE servers (
 srv_name VARCHAR(20) PRIMARY KEY,
 srv_os VARCHAR(20),
 srv_ram INT,
 srv_ramFreq FLOAT,
 srv_processor FLOAT,
 srv_procFreq FLOAT,
 srv_raidType INT,
 srv_ipEth0 VARCHAR(15),
 srv_macEth0 VARCHAR(20),
 srv_ipEth1 VARCHAR(15),
 srv_macEth1 VARCHAR(20),
 srv_ipEth2 VARCHAR(15),
 srv_macEth2 VARCHAR(20),
 srv_ipEth3 VARCHAR(15),

 srv_macEth3 VARCHAR(20),
 srv_diskSpace FLOAT,
 srv_psu FLOAT,
 srv_comments VARCHAR(150)
)ENGINE=INNODB;

/* Create network table */

CREATE TABLE network (
 net_sample_id INT AUTO_INCREMENT PRIMARY
KEY,
 test_id INT,
 net_sampleTime DATE NOT NULL,
 net_latencyAw FLOAT,
 net_latencyLw FLOAT,
 net_latencyOw FLOAT,
 net_latencyAl FLOAT,
 net_latencyLl FLOAT,
 net_latencyOl FLOAT
)ENGINE=INNODB;

/* Create processor table. */

CREATE TABLE processor (
 proc_sample_id INT
 AUTO_INCREMENT PRIMARY KEY,
 test_id INT,
 proc_sampleTime DATE NOT NULL,
 proc_utilAw FLOAT,
 proc_utilLw FLOAT,
 proc_utilOw FLOAT,
 proc_utilAl FLOAT,
 proc_utilLl FLOAT,
 proc_utilOl FLOAT
)ENGINE=INNODB;

/* Create serverTempInt table */

CREATE TABLE serverTempInt (
 tempI_sample_id INT AUTO_INCREMENT PRIMARY
KEY,
 test_id INT,
 tempI_sampleTime DATE NOT NULL,
 tempI_nbAw FLOAT,
 tempI_nbLw FLOAT,
 tempI_nbOw FLOAT,
 tempI_nbAl FLOAT,
 tempI_nbLl FLOAT,
 tempI_nbOl FLOAT,
 tempI_cpuAw FLOAT,
 tempI_cpuLw FLOAT,
 tempI_cpuOw FLOAT,
 tempI_cpuAl FLOAT,
 tempI_cpuLl FLOAT,

 tempI_cpuOl FLOAT
)ENGINE=INNODB;

/* Create serverTempExt table */

CREATE TABLE serverTempExt (
 tempE_sample_id INT AUTO_INCREMENT PRIMARY
KEY,
 test_id INT,
 tempE_sampleTime DATE NOT NULL,
 tempE_nbAw FLOAT,
 tempE_nbLw FLOAT,
 tempE_nbOw FLOAT,
 tempE_nbAl FLOAT,
 tempE_nbLl FLOAT,
 tempE_nbOl FLOAT,
 tempE_cpuAw FLOAT,
 tempE_cpuLw FLOAT,
 tempE_cpuOw FLOAT,
 tempE_cpuAl FLOAT,
 tempE_cpuLl FLOAT,
 tempE_cpuOl FLOAT,
 tempE_ramAw FLOAT,
 tempE_ramLw FLOAT,
 tempE_ramOw FLOAT,
 tempE_ramAl FLOAT,
 tempE_ramLl FLOAT,
 tempE_ramOl FLOAT,
 tempE_airInAw FLOAT,
 tempE_airInLw FLOAT,
 tempE_airOutAl FLOAT,
 tempE_airOutLl FLOAT,
 tempE_oilBotO FLOAT,
 tempE_oilMidO FLOAT,
 tempE_oilTopO FLOAT,
 tempE_oilInO FLOAT,
 tempE_oilOutO FLOAT,
 tempE_liqInL FLOAT,
 tempE_liqOutL FLOAT,
 tempE_extraAw FLOAT,
 tempE_extraLw FLOAT,
 tempE_extraOw FLOAT,
 tempE_extraAl FLOAT,
 tempE_extraLl FLOAT,
 tempE_extraOl FLOAT,
 tempE_ambTemp FLOAT,
 tempE_ampTempO FLOAT
)ENGINE=INNODB;

/* Create ram table. */

CREATE TABLE ram (
 ram_sample_id INT AUTO_INCREMENT PRIMARY
KEY,
 test_id INT,

 ram_sampleTime DATE NOT NULL,
 ram_useAw FLOAT,
 ram_useLw FLOAT,
 ram_useOw FLOAT,
 ram_useAl FLOAT,
 ram_useLl FLOAT,
 ram_useOl FLOAT
)ENGINE=INNODB;

/* Create power table */

CREATE TABLE power (
 pow_sample_id INT AUTO_INCREMENT PRIMARY
KEY,
 test_id INT,
 pow_sampleTime DATE NOT NULL,
 pow_airWin FLOAT,
 pow_liqWin FLOAT,
 pow_oilWin FLOAT,
 pow_airLin FLOAT,
 pow_liqLin FLOAT,
 pow_oilLin FLOAT
)ENGINE=INNODB;

/* Create control table */

/* CREATE TABLE control (
 con_scriptName VARCHAR(20) PRIMARY KEY,
 test_id INT,
 con_desc VARCHAR(50),
 con_purpose VARCHAR(50)
)ENGINE=INNODB; */

/* Create table index */

CREATE INDEX idx_test_id ON testing(test_id);
CREATE INDEX idx_srv_name ON servers(srv_name);
CREATE INDEX idx_proc_sample_id ON processor(proc_sample_id);
CREATE INDEX idx_tempI_sample_id ON serverTempInt(tempI_sample_id);
CREATE INDEX idx_tempE_sample_id ON serverTempExt(tempE_sample_id);
CREATE INDEX idx_ram_sample_id ON ram(ram_sample_id);
CREATE INDEX idx_pow_sample_id ON power (pow_sample_id);

/* Add foreign keys */

ALTER TABLE testing ADD FOREIGN KEY (net_sample_id) REFERENCES network
(net_sample_id) ON DELETE NO ACTION;
ALTER TABLE testing ADD FOREIGN KEY (tempI_sample_id) REFERENCES
serverTempInt (tempI_sample_id) ON DELETE NO ACTION;
ALTER TABLE testing ADD FOREIGN KEY (tempE_sample_id) REFERENCES
serverTempExt (tempE_sample_id) ON DELETE NO ACTION;
ALTER TABLE testing ADD FOREIGN KEY (proc_sample_id) REFERENCES processor
(proc_sample_id) ON DELETE NO ACTION;
ALTER TABLE testing ADD FOREIGN KEY (ram_sample_id) REFERENCES ram
(ram_sample_id) ON DELETE NO ACTION;

ALTER TABLE testing ADD FOREIGN KEY (srv_name) REFERENCES servers
(srv_name) ON DELETE NO ACTION;
ALTER TABLE testing ADD FOREIGN KEY (pow_sample_id) REFERENCES power
(pow_sample_id) ON DELETE NO ACTION;
ALTER TABLE network ADD FOREIGN KEY (test_id) REFERENCES testing (test_id) ON
DELETE NO ACTION;
ALTER TABLE serverTempInt ADD FOREIGN KEY (test_id) REFERENCES testing
(test_id) ON DELETE NO ACTION;
ALTER TABLE serverTempExt ADD FOREIGN KEY (test_id) REFERENCES testing
(test_id) ON DELETE NO ACTION;
ALTER TABLE processor ADD FOREIGN KEY (test_id) REFERENCES testing (test_id)
ON DELETE NO ACTION;
ALTER TABLE ram ADD FOREIGN KEY (test_id) REFERENCES testing (test_id) ON
DELETE NO ACTION;
ALTER TABLE power ADD FOREIGN KEY (test_id) REFERENCES testing (test_id) ON
DELETE NO ACTION;

Appendix D

/* UserCreate.sql */
/* Create users and set priviliges */

/* Create users */

CREATE USER 'subcooling'@'localhost' IDENTIFIED BY 'subcoolingisgreat';
CREATE USER 'admin'@'localhost' IDENTIFIED BY 'Sub123Cooling!@#';

/* Set priviliges */

GRANT INSERT ON 'subcooling'.* TO 'subcooling'@'localhost';
GRANT INSERT,ALTER,CREATE,DELETE,DROP,INDEX,INSERT,SELECT,UPDATE ON *.* TO
'admin'@'localhost';

Appendix E

#!/bin/bash

#get_air00.sh
#Script to get the CPU and motherboard temperature from air00 and send
#the data back to the control server

#Timestamp variables
TIME="`date +"%H%M"`,"
DATE="`date +"%e%b"`,"

#Set the server that this script is being sent to
HOST=air00

#Get temperature data from lm-sensors program, -f option for output in
Fahrenheit
sensors -f > /tmp/raw_$HOST.dat

#Print second field from raw_$HOST.dat and store in data_$HOST.dat
awk '{print $2}' /tmp/raw_$HOST.dat > /tmp/data_$HOST.dat

#Delete lines 1-27 and 29-31 from temp_$HOST.dat, remove the +, °, and F,
and store the result as CPUTEMP
CPUTEMP="`sed -e '1,27d' -e '29,31d' -e 's/+//' -e 's/°F//'
/tmp/data_$HOST.dat`,"

#Delete lines 1-26 and 28-31 from temp_$HOST.dat, remove the +, °, and F,
and store the result as BTEMP
BTEMP="`sed -e '1,25d' -e '27,31d' -e 's/+//' -e 's/°F//'
/tmp/data_$HOST.dat`"

#Output data to a .csv file on the control server
echo $DATE$TIME$CPUTEMP$BTEMP | ssh root@172.16.0.1 "cat >>
/Testing/temps/results/$HOST.csv"

#Notify us if the server is overheating
if [$CPUTEMP –gt 150]; then
echo "From: monitor" > /tmp/mail.txt
echo "To: sat4480s-l@mtu.edu" >> /tmp/mail.txt
echo "Subject:"$HOST" is overheating" >> /tmp/mail.txt
echo " " >> /tmp/mail.txt
echo "Temperature has reached "$CPUTEMP"°F" >> /tmp/mail.txt
/usr/sbin/sendmail -t < /tmp/mail.txt
fi

#Clean up the temporary files
rm -f /tmp/data_$HOST.dat /tmp/raw_$HOST.dat /tmp/mail.txt

Appendix F

#!/bin/sh

#send_air00.sh
#Script send the get_air00 script to the test server.
#The get script will send back the results

cat /Testing/temps/scripts/get/get_air00.sh | ssh root@air00

#Example output file
#air00.csv
Date, Time, CPU, MB
24Mar,0106,73.4,68.0
24Mar,0109,73.4,68.0
24Mar,0110,73.5,68.0
24Mar,0110,73.5,68.0

Appendix G

/* GetAddress */

#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 3

// Setup a oneWire instance to communicate with any OneWire devices (not just
Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

// arrays to hold device address
DeviceAddress thermometer;

void setup(void)
{
 // start serial port
 Serial.begin(9600);
 Serial.println("One Wire address Finder");

 // locate devices on the bus
 Serial.print("Locating devices...");
 sensors.begin();
 Serial.println("Found ");

 sensors.getAddress(thermometer, 0);
 printAddress(thermometer);
 Serial.println();

 // set the resolution to 9 bit (Each Dallas/Maxim device is capable of
several different resolutions)
 sensors.setResolution(thermometer, 9);

}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
 float tempC = sensors.getTempC(deviceAddress);
 Serial.print("Temp C: ");
 Serial.print(tempC);
}

void loop(void)
{
 // call sensors.requestTemperatures() to issue a global temperature
 // request to all devices on the bus
 Serial.print("Requesting temperatures...");

 sensors.requestTemperatures(); // Send the command to get temperatures
 Serial.println("DONE");

 printTemperature(thermometer);
 Serial.println("");
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
 for (uint8_t i = 0; i < 8; i++)
 {
 if (deviceAddress[i] < 16) Serial.print("0");
 Serial.print(deviceAddress[i], HEX);
 }
}

Appendix H

/* GetTemps.pde */

#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 3 on the Arduino
#define ONE_WIRE_BUS 3
#define TEMPERATURE_PRECISION 9
#define THERMOMETERS_MAX 1
#define HUMAN 0
#define MACHINE 1

//Select output type, 0 for human readable, 1 for CSV
#define OUTPUT_TYPE 0

// Setup a oneWire instance to communicate with any OneWire devices (not just
Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
// arrays to hold device addresses
DeviceAddress thermometer[] = {{0x10, 0x5B, 0x18, 0x25, 0x02, 0x08, 0x00,
0xA7}};
// This is one device addres {0x10, 0x5B, 0x18, 0x25, 0x02, 0x08, 0x00, 0xA7}

int x;

void setup(void)
{

 // start serial port
 Serial.begin(9600);

 // Start up the library
 sensors.begin();

 if(OUTPUT_TYPE == HUMAN){
 // locate devices on the bus
 Serial.print("Locating devices...");
 Serial.print("Found ");
 Serial.print(sensors.getDeviceCount(), DEC);
 Serial.println(" devices.");

 //Print all devices found
 for(x=0; x<THERMOMETERS_MAX;x++)
 {
 Serial.print("Device ");
 Serial.print(x);
 Serial.print(" Address:");
 printAddress(thermometer[x]);
 Serial.println();

 }
 }else
 {
 Serial.print("DEVICES ");
 Serial.println(sensors.getDeviceCount(), DEC);
 //Print all devices found
 for(x=0; x<THERMOMETERS_MAX;x++)
 {
 printAddress(thermometer[x]);
 Serial.print(";");
 }
 Serial.println("");
 }
 //Set 9 bit resolution for all devices
 for(x=0; x<THERMOMETERS_MAX;x++) sensors.setResolution(thermometer[x], 9);
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
 for (uint8_t i = 0; i < 8; i++)
 {
 // zero pad the address if necessary
 if (deviceAddress[i] < 16) Serial.print("0");
 Serial.print(deviceAddress[i], HEX);
 }
}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
 float tempC = sensors.getTempC(deviceAddress);
 Serial.print("Temp C: ");
 Serial.print(tempC);
 Serial.print(" Temp F: ");
 Serial.print(DallasTemperature::toFahrenheit(tempC));
}
//function to print temp in degC for parsing
void printTemperatureCondensed(DeviceAddress deviceAddress)
{
 Serial.print(sensors.getTempC(deviceAddress));
 Serial.print(";");
}
// function to print a device's resolution
void printResolution(DeviceAddress deviceAddress)
{
 Serial.print("Resolution: ");
 Serial.print(sensors.getResolution(deviceAddress));
 Serial.println();
}

// main function to print information about a device
void printData(DeviceAddress deviceAddress)
{
 Serial.print("Device Address: ");
 printAddress(deviceAddress);
 Serial.print(" ");

 printTemperature(deviceAddress);
 Serial.println();
}

void humanLoop(){
 // call sensors.requestTemperatures() to issue a global temperature
 // request to all devices on the bus
 Serial.print("Requesting temperatures...");
 sensors.requestTemperatures();
 Serial.println("DONE");
 // print device info
 for(x=0; x<THERMOMETERS_MAX;x++) printData(thermometer[x]);
}
void machineLoop(){
 // call sensors.requestTemperatures() to issue a global temperature
 // request to all devices on the bus
 Serial.println("REQUEST");
 sensors.requestTemperatures();

 //print condensed list
 for(x=0; x<THERMOMETERS_MAX;x++) printTemperatureCondensed(thermometer[x]);
 Serial.println("");
}
void loop(void)
{
 if(OUTPUT_TYPE == MACHINE){
 machineLoop();}else humanLoop();
}

	I. INTRODUCTION
	II. materials
	A. Hardware
	B. Software
	C. Network Configuration
	D. Oil

	III. Testing Procedures, Problems and Solutions
	IV. Conclusion

